Sunday, July 1, 2018

GWPF Newsletter: Previously Unsuspected Volcanic Warming Confirmed Under West Antarctic Ice Sheet








The Sun Allergy Of Climate Researchers

In this newsletter:

1) Previously Unsuspected Volcanic Warming Confirmed Under West Antarctic Ice Sheet
National Science Foundation, 27 June 2018
 
2) Global Sea Ice Rebounds – One Million Square Kilometre Higher Than Last Year
Sunshine Hours, 27 June 2018


 
3) The Sun Allergy Of Climate Researchers
Ulli Kulke, Achse des Guten, 26 June 2018
 
4) ‘EU’s Absurd Crusade To Recycle Plastic Just Makes Ocean Pollution Worse’
John Ingham, Daily Express, 28 June 2018


Full details:

1) Previously Unsuspected Volcanic Warming Confirmed Under West Antarctic Ice Sheet
National Science Foundation, 27 June 2018

Potential effects of volcanic warming on ice-sheet melting and sea level rise still to be determined

Tracing a chemical signature of helium in seawater, an international team of scientists funded by the National Science Foundation (NSF) and the United Kingdom’s (U.K.) Natural Environment Research Council (NERC) has discovered a previously unknown volcanic hotspot beneath the massive West Antarctic Ice Sheet (WAIS).

Researchers say the newly discovered heat source could contribute in ways yet unknown to the potential collapse of the ice sheet.

The scientific consensus is that the rapidly melting Pine Island Glacier, the focal point of the study, would be a significant source of global sea level rise should the melting there continue or accelerate. Glaciers such as Pine Island act as plugs that regulate the speed at which the ice sheet flows into the sea.

The new research was published by an international team, led by Brice Loose of the Graduate School of Oceanography at the University of Rhode Island. His research was supported by an award from NSF’s Office of Polar Programs, which manages the U.S. Antarctic Program.

Researchers from East Anglia and Southampton universities in the U.K., Arizona State University, the Woods Hole Oceanographic Institution, and the British Antarctic Survey contributed to the study.

Their findings were published in the June 22 edition of the journal Nature Communications.

Peter Milne, program director for ocean and atmospheric science in NSF’s Division of Polar Programs, noted that the discovery adds significant information about what controls the stability of the Antarctic ice sheets.

“To model the complex processes of how the ice sheets move is a difficult, but essential thing to do if we are to understand their role in the global climate and their potential for contributing to sea level rise,” he said. “This research may add a critical piece of information as we try to assemble that ‘big picture.'”

The researchers first noted the volcanic activity in 2007 and verified its existence again in 2014.

It remains unclear how the newly discovered activity affects knowledge about the glacier, because researchers don’t yet know how volcanic heat is distributed along the bottom of the ice sheet. However, researchers do know that the heat from the volcano is producing melting beneath the ice sheet. This meltwater is leaking across the grounding line where the ice shelf meets the ocean.

The heat source, Loose and team note, is about half that of the active volcano Grímsvötn, in Iceland.

Full post

see also GWPF, 2 May 2012: Hidden Volcanoes Under The Ice May Be Melting Antarctic Glaciers
 
GWPF  11 July 2017: NASA: Volcanic Activity Is Heating Up Antarctica's Ice Sheet



2) Global Sea Ice Rebounds – One Million Square Kilometre Higher Than Last Year
Sunshine Hours, 27 June 2018

Global Sea Ice extent 1,000,000 km2 higher than last year on this day.



Full post

3) The Sun Allergy Of Climate Researchers
Ulli Kulke, Achse des Guten, 26 June 2018

Even if the influence of the sun on climate change in recent decades has receded somewhat into the background, there are a number of researchers who are investigating the fluctuating effect of our central star on our Earth’s atmosphere, thus also on climate change – and who have produced surprising results in the process.



Henrik Svensmark, head of solar research at Denmark’s Technical University in Copenhagen, is one of them. And he ventures far ahead in the climate debate, the research with perhaps the greatest significance of our time. His research is contested, of course. Nevertheless, Svensmark and his critics agree that the topic “sun” deserves more attention in climate research. The participants are particularly interested in the complex interplay between our central star and ionizing emissaries from the depths of the galaxy – “cosmic radiation”.

Svensmark says: “The climate is influenced more by changes in cosmic radiation than by carbon dioxide”. CO2 has an effect, of course, “but it is far less than most current climate models assume, and also less than the influence of cosmic radiation”. In his opinion, a doubling of the greenhouse gas in the atmosphere would cause an increase in global temperature of at most one degree, and not two degrees, as is now generally accepted.

In other words, the “climate sensitivity” of carbon dioxide is only half as high as assumed. And as far as the changes in the natural CO2 balance of the earth’s atmosphere and those in temperature over millions of years are concerned, the greenhouse gas is rather “a slave to cosmic radiation and the global warming it causes, and not its ruler”. The amount of CO2 followed the warming by and large, not the other way around.

Last December, Svensmark again published a scientific study in the journal “Nature Communications” to support his thesis. The work is – at first – less about the sun itself than about how our climate and weather events are influenced by cosmic radiation, ionizing particles that permanently impinge on the Earth’s atmosphere. This is a particle stream that originates from exploding supernovae, that flows through the galaxy and finally, when it reaches the Earth’s atmosphere, exerts an influence on cloud formation, amplifying it.

The “missing link” or the gap in theory

This is where the sun comes into play: it modulates this particle flow decisively. That is why, says Svensmark, the sun is the main actor in the earth’s climate. Recently, together with his son and co-author Jacob, he explained the background and results of the new study in an interview with Benny Peiser.



 
The mechanism has been under discussion for many years. The influence of the sun on galactic radiation has long been undisputed. However, the extent to which their ionizing particles actually contribute to cloud formation has not been not fully clarified. This has been the missing link, the gap in the cosmic ray-climate theory. With the contribution of the Danish researcher, which he wrote with Nir Shaviv of the Hebrew University of Jerusalem, among others, the scientists now claim to have identified that missing link. Not only theoretically, but also practically: through experiments in large chambers in which they were able to simulate the process of cloud formation in its first beginnings in large-scale experiments.

For the researchers involved, the chain is now closed: The particle flow hits the Earth’s atmosphere, ionizes microscopically small suspended particles, so-called “aerosols”, and causes them to expand, causing water vapour to condense on them and form clouds. And in the lower layers of the atmosphere, where they have a cooling effect on the earth’s temperature because they reflect the warming rays of the sun. Clouds in the upper layers, on the other hand, hold back the heat radiated onto the earth in the atmosphere, thus heating it rather than cooling it.

This process, which Svensmark and his colleagues are now claiming to have demonstrated, takes place with varying intensity, sometimes stronger, sometimes weaker – according to its reading depending on the moods of the sun: If the sun is very active, its magnetic field is particularly strong; it in turn emits ionising particles, the so-called solar wind, which however keeps off the other cosmic radiation, i.e. the cloud-promoting radiation, from the earth (the latter is also called “galactic cosmic radiation” for better differentiation from the “solar wind”).

This means that when the sun is active, less cooling clouds form and the earth heats up.

Sunspots as an early warning system

An active sun is accompanied by a higher number and a greater frequency of sunspots, which can sometimes even be observed with strong sunglasses, shortly before sunset, for example on the ocean horizon, when glare has diminished. Already at the turn of the 18th and 19th centuries, the German-British astronomer Wilhelm Herschel had registered a connection between sunspots and the climate and derived his “theory of the pork cycle” from this. However, the physical background remained hidden to him because the technical equipment of modern solar research was lacking. Perhaps the fat and lean years reported in the Bible are also due to the regular variations in solar activity.

Note: According to Svensmark’s research, the influence of the sun on the earth’s climate does not function through the variance of its warming rays, which indeed fluctuate extremely little – which is why many climate researchers deny their work all round, but possibly somewhat hastily. Svensmark says it is rather a subtle electrophysical effect. He assumes that the change in solar activity has a five to seven times stronger influence on climate fluctuations than the sun’s rays themselves.

A symptom that can be explained by this connection and in return confirms it stands out statistically: At a time when global warming has increased more than ever since measurements began, namely in the second half of the 20th century, the sun has been on average more active than at least in the last 8,000 years. This is generally accepted by the scientists of solar science. Nevertheless, it has so far played a subordinate role in leading climate research as an influencing factor for global warming. Also because this connection, starting with solar activity and cosmic radiation, the formation of clouds up to the global temperature could not be continuously detected. There was a gap in the detection chain between cosmic radiation and cloud formation.

Svensmark and his co-authors now assume to have closed exactly this “missing link”. It is, he says, a “breakthrough in understanding how cosmic radiation from supernovae affects cloud formation on Earth”, achieved through empirical experiments in its cloud chambers. That’s what the press release on the publication in “Nature Communication” says.

The study shows that “a change in the ionization of the atmosphere” does indeed influence the number of nuclei from which clouds are formed. The experiments in their chambers, in which they simulated the atmosphere and the play of ionizing radiation, would have resulted: According to the study, particles charged by cosmic radiation form clouds “several percent more frequently” than “neutral” particles. The tests had been repeated over 100 times to statistically clarify the signal.

The Cloud Explainers

Fluctuations in the solar wind cause the ion current to vary by about 20 percent. Svensmark and his colleagues now write that their experiments have resulted: This “twenty percent fluctuation in ion production can increase growth by one to four percent under pure conditions” (that is, the growth of the particles that form clouds). How strong this effect is in detail depends on regional differences and the corresponding cloud types.

The mechanism described fits another study by the Danish researchers who submitted it two years ago. They had found a correlation between sudden, strong weakening of the solar wind – so-called “Forbush decreases” – and changes in cloud cover. They now refer to this when they go further: It can be assumed that those fluctuations in particle growth of one to four percent could in turn “explain the changes in cloud cover of about two percent following Forbush events”. Two percent more or less cloud area does not sound significant at first. However, since the observation of global warming is about tenths of a percent of Celsius degrees, this natural effect could still play a role that should not be neglected.

For the authors, the physical experiments can be inferred congruently with the empiricism of climate events. According to Svensmark, this applies not only to the accelerated warming between 1970 and 1998, which was accompanied by record cycles of the sun, but also to the years 2006 to 2017, when extremely weak cycles were registered – parallel to a very high but hardly rising plateau of global temperatures. Such correlations could be traced many times over the last 10,000 years (not only the level of temperatures, but also the strength of cosmic radiation can be reconstructed over long periods of time).

The interplay is even clearer when looking at the last few million years, when temperatures rose or fell by 10 degrees more often, while our solar system during its march through the galaxy was exposed to a violent roller-coaster of regions with many or few exploding stars – and correspondingly fluctuating particle streams: “The mechanism could therefore provide a natural explanation,” the authors of the study write, “for the observed correlations between climate fluctuations and cosmic radiation, modulated by activities of either the sun or of supernovae in the vicinity of our solar system, observed over very long periods of time.“

Physical basis for historical observations

The researchers from Denmark and Israel are not the only ones who are investigating the relationship between cosmic radiation, the sun and the earth’s climate. The British particle physicist Jasper Kirkby documented very clear correlations ten years ago. Kirkby therefore also carries out physical experiments that are quite similar to the Danish experiments in order to find out the mechanism behind them. Together with the Frankfurt atmospheric scientist Joachim Curtius, he is conducting research at the European nuclear research centre CERN in Geneva, Switzerland, where he investigated the formation of clouds of aerosols and charged particles – also in a chamber, but also using computer models. And so wanted to derive the physical basis for historical observations.


Kirkby is head of the “Cloud” project (Cosmics Leaving Outdoor Droplets). Two years ago, CERN researchers published an interim result, but it was negative in this respect. In their experiments they could not (yet?) grasp the influence of ionizing radiation on the birth of cooling clouds. This is another reason why he is sceptical about the results of Svensmark’s study for the first time.

“Overall, the paper is interesting,” the CLOUD researcher attests to his Danish colleague, “the theoretical treatment in the paper is solid and the experiments seem to have been carried out properly.” But Kirkby distances himself from the importance of experiments with simulated cosmic radiation for the climate discourse: “In the main part, in the ‘discussion’, he is wrong, the assumptions are too optimistic about how relevant the effect is and how much it can be measured in its effects on the climate.”

He estimates the effects of additional ions, which in the case of stronger cosmic radiation accelerate the growth of aerosol particles and thus also the formation of clouds, “to a maximum of one percent”. In view of these fluctuations in cosmic radiation of only 20 percent, the effect moves at one or two tenths of a percentage point. “And this leads to an absolutely insignificant change in the droplets that are supposed to grow to the cloud.” Svensmark, on the other hand, says that his calculated effect of one to four percent is already calculated on the basis that the ion fluctuation is only 20 percent.

An interest in knowledge, two research locations, two different results. Although one thing is clear: the sun has a greater influence than some would like to believe in climate research. Svensmark believes he knows why the “cloud” experiments in Geneva did not have any significant effects on the assumed mechanism. He assumes that the Nuclei, which were examined in Geneva for their change by cosmic radiation, were “estimated to be too small by a factor of ten”. According to Svensmark, Kirkby also relied too much on numerical models in his study.

Here, however, Kirby criticises his Danish colleague: “Such experiments alone are not enough for the blanket statements from the paper, the effect must be presented in a global model, and if you use the results from Denmark for this, then I expect a negligible quantity will come out”. Svensmark also finds it a “good idea to study the effects on cloud formation further in a global model”, but he maintains that “our observations depict the entire relationship from cosmic radiation to aerosols and clouds”.

Researchers keep a low profile when it comes to the influence of the sun

“To have found the last piece of the puzzle in the interplay of sun, cosmic radiation, clouds and climate change, as the Danish researchers formulated it in their press release on the study, is indeed a high claim. This also raises doubts with another climate researcher, who himself is not one of the great Cassandra shouts when it comes to world climate. Even if he finds Svensmark’s approach important and negligently unnoticed so far.

The Hamburg climate expert Hans von Storch is known in the climate community above all for the fact that he considers climate research to be too strongly politicised. In his opinion, it is too one-sided on alarm, and economic interests have also played a role in the debate.

Nevertheless, he also finds Svensmark’s press release “dubious” and considers the reliable result to be rather narrow and thus oversold. The paper was “subjected to a professional assessment,” says the professor at the Hamburg Institute of Meteorology. It seems to him that a subjunctive would have been more appropriate for the statements of the study here and there, even though he admits a rather limited expertise in cloud research.

And yet: Von Storch has no understanding for the fact that Svensmark’s contribution has so far been ignored in the climate debate. “Although it addresses a fundamentally controversial topic in the climate debate, namely the role of the changing effects of the sun, it has not been – or hardly – discussed in the public debate. He has not yet “heard anything about him” even in his scientific circles. He considers this “questionable”. On 10 June,“Welt am Sonntag” alone dealt with the topic in detail on a double page.

Von Storch’s adds to his lament about this reticence regarding Svensmark: In climate science, he says, the sun is something like a “hot potato”. His experience is that those who address the issue quickly burn their fingers among colleagues. Nobody wants to venture too far because too many people prefer to focus on carbon dioxide in order to advance the restructuring of the energy industry. Svensmark himself does not deny that CO2 is a greenhouse gas and that industrialisation contributes to global warming, but he believes that the sun is a stronger driver.

Nevertheless, those researchers who claim that all natural fluctuations – such as those of solar activity – can be neglected in their influence on climate change are leading the way, confirming Svensmark’s reservation: The two Max Planck Institutes working in the field – for solar system research in Göttingen and for meteorology in Hamburg – declined to comment on the paper in response to a request by “Welt am Sonntag”.

Svensmark critic Kirkby has no fundamental doubts about the significant influence of fluctuations in solar activity on climate change, at least over longer periods of time. Which is no surprise. In an article in the scientific journal “Surveys in Geophysics” 2008 (“Cosmic Rays and Climate”, with convincing graphics), he stated: With regards the Alps, as an example, the coinciding shifts in temperature and solar activity observed for at least 2,000 years would suggest the conclusion that these are “major” influencing factor on the climate. Kirkby describes it thus: The medieval warm period with “temperatures similar to today’s”, the Little Ice Age in the 17th century and its end, the somewhat weaker cooling at the beginning of the 19th century, the subsequent onset of global warming with a small bend towards the middle of the 20th century, the warming pause – all these curves all too clearly run along the rhythm of solar activity in Kirky’s diverse graphics.

Warmth? Cold? Rain? The answer is blowing in the solar wind

This was obviously not a regionally limited phenomenon, the connection is not only valid in the northern hemisphere, but could also be read from the development of the Andean glaciers, for example. The researcher from Geneva also collected extensive data for other parallels: in addition to temperatures, the rhythm of droughts and rainy years follows the rhythms of the sun. Warmth? Cold? Rain? Drought? Monsoon? The answer is blowing in the solar wind, one may read from Kirby’s historical studies, astonishingly clearly. Even if one takes into consideration that, in his opinion, the sun has lost the dominance in recent decades in climate developments to other factors – such as CO2, in palaeo-climate research, the influence of the sun is the decisive factor for Kirkby.

The cloud researcher says: “The correlations are far too numerous and too diverse to be dismissed them as coincidence.” He is particularly interested in the parallels that arise over periods of several hundred years. There, the fluctuations in solar activity are “the only possible factors that can be used as external factors for observed climate changes, perhaps combined with the regular internal oscillations in the atmosphere or the oceans”. It cannot be the warmth by the sun’s solar radiation itself, which has hardly changed during this period of time. But even if the effects are clear, the following doubt still applies to him: “We have not yet found the mechanism.”

What distinguishes Kirkby from Svensmark: The Danish scientist claims to have deciphered the secret behind this correlation, the physical mechanism, while the CERN researcher remains sceptical. Will he still continue to work in this field himself? After all, he himself has worked on it for decades. “Of course,” Kirkby answers, “it’s still an open question, of course I’m advancing this research.” And the new paper by his colleague Svensmark is also usable and worth reading. According to the current state of knowledge, there are only two conceivable ways in which sun and climate could be brought together: The ions from the cosmos and UV radiation, but this is absorbed in the stratosphere so that it has only a weak effect in the lower atmosphere.

Is too little account taken of the solar influence in the climate models? “It is quite simple,” Kirkby answers: “As long as a mechanism is not sufficiently depicted, the assumed effect – such as cosmic radiation – cannot be built into the models.” Is there a lack of money in solar research? “I don’t know how much is being put into this. Much funding, in any case, goes into the satellite-based exploration of the sun itself. Too little funding, however, is going into the relationship between the sun and the climate,” says Kirkby – and strives for reconciliation: “But I believe that the topic is being treated seriously in the climate debate.”

When it comes to the Roman climate optimum, the early medieval cold period, the high medieval warm period, the early modern “Little Ice Age” — everything seems to fit together with reconstructed solar activity, up to the warming during the middle of the 20th century, possibly with a delay of several years. But does this connection with our central star also apply to recent warming, from the 1980s onwards — and irrespective the fact that CO2, i.e. anthropogenic emissions, have long since interfered in developments as an “external factor”, however strong this may have been?

Full essay

4) ‘EU’s Absurd Crusade To Recycle Plastic Just Makes Ocean Pollution Worse’
John Ingham, Daily Express, 28 June 2018

The European Union’s crusade to recycle plastic is making pollution of the world’s oceans worse, a climate think tank warned yesterday.



Wealthy Western countries including the UK ship millions of tons of plastic waste to poorer countries for recycling every year.

But because environmental controls in these countries are weaker, much of the plastic ends up in the sea or burned in the open, releasing dangerous chemicals.

The report by the Global Warming Policy Foundation, which advocates climate change scepticism, criticised the EU’s “absurd” crusade to recycle plastic.

And it said Brussels is also blocking the controversial option that would permanently remove plastic from the environment – “clean” incineration.

The revelation came as it was revealed yesterday that Britons throw away 55.5 billion plastic items a year.

The staggering figure works out at about 1,000 items each, with plastic food packaging, bottles and wet wipes dominating, according to pollsters Opinium Research.

Yet nine in 10 of people quizzed said they were worried about the impact of plastic on the environment.

Now the UK has been urged to tackle the production of single-use plastic.

The Foundation study, Save The Oceans – Stop Recycling Plastic, said the problem has been compounded by China’s decision earlier this year to refuse to accept plastic waste from overseas.

For the past two decades nearly half the EU’s annual six million tons of plastic waste has gone to China for recycling.

Now EU states, the USA and Japan are “desperately” turning to countries such as Vietnam, Malaysia, Indonesia and Bangladesh.

The study’s author, Finnish public health expert Dr Mikko Paunio, wrote: “Since the waste management infrastructure in South-east Asia is much more primitive than in China, it remains unclear to what extent the rejected ‘recycles’ end up in the ocean or burned in the open.”

Full story

The London-based Global Warming Policy Forum is a world leading think tank on global warming policy issues. The GWPF newsletter is prepared by Director Dr Benny Peiser - for more information, please visit the website at www.thegwpf.com.

No comments:

Post a Comment

Thanks for engaging in the debate!

Because this is a public forum, we will only publish comments that are respectful and do NOT contain links to other sites. We appreciate your cooperation.

Please note - if you use the new REPLY button for comments, please start your comments AFTER the code. Also, the Blogger comment limit is 4,096 characters, so to post something longer, you may wish to use Part 1, Part 2 etc.